Studying a Tumor Growth Partial Differential Equation via the Black–Scholes Equation
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملExact solutions of a linear fractional partial differential equation via characteristics method
In recent years, many methods have been studied for solving differential equations of fractional order, such as Lie group method, invariant subspace method and numerical methods, cite{6,5,7,8}. Among this, the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order. In this paper we apply this method f...
متن کاملSolving Fuzzy Partial Differential Equation by Differential Transformation Method
Normal 0 false false false ...
متن کاملon the goursat problem for a linear partial differential equation
in this paper, the goursat problem of a general form for a linear partial differential equation is investigated with the help of the riemann function method. some results are given concerning the existence and uniqueness for the solution of the suggested problem.
متن کاملImage Zooming using Non-linear Partial Differential Equation
The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computation
سال: 2020
ISSN: 2079-3197
DOI: 10.3390/computation8020057